Pico leaderboard Nov 2019
Laser Tools leaderboard November 2019
Sealey leaderboard Nov 2019
Bosch leaderboard April 2019 on

4 Focus – Innovative Technology – Jaguar, Renault, Kia, Falken

0

Iain Robertson takes a look at innovative technology in newer models…

JAGUAR – VIRTUAL REALITY IN-CAR 

It might be terrifying enough to have other road-users jumping out at you, while carrying out a test drive, but Jaguar is already working on the first application of Virtual Reality (3D technology) for its next-generation of head-up displays (HUD). Naturally, HUD is not new and the Land Rover arm of the company has already developed ‘virtual terrain’ technology using perimetric cameras to provide off-roaders with a virtual and augmented view of what lies ahead and just below the front axle, aspects that would normally dictate an external check first. However, Jaguar’s research is being carried out in conjunction with the Centre for Advanced Photonics and Electronics (CAPE) at Cambridge University. The intention is to develop a more immersive and safer driving experience that will match more closely real-life activities to make drivers react more speedily and naturally to hazards and prompts, when using the HUD (the graphic images of which are normally projected onto the lower section of windscreen). Perhaps more intriguing is the ‘split-screen’ technology that allows a front passenger but not the driver to view TV programmes on the car’s central touchscreen (nothing new) but 3D programmes can now be viewed without a need to wear special glasses. Both developments form part of Jaguar Land Rover’s ‘Smart Cabin’ vision for the future, applying technologies that combine to create personalised in-car spaces, with enhanced safety, entertainment and convenience central to an autonomous, shared plan. 

RENAULT – ZOE BECOMES MORE ECO-FRIENDLY 

One of the core issues residing around the ‘eco-friendly’ claims made by various carmakers for their latest electrified vehicle offerings, apart from electricity being sourced from coal, gas, or oil-fired power stations, is that CO2 emissions are still high in manufacturing terms. Therefore, it makes it difficult, when attempting to state a positive environmental contribution, when the ‘costs’ associated with EVs are steeper than for ICE alternatives. Carmakers have been slow to introduce trim fabrics produced from rapidly renewable plants. BMW has managed it with its i3, in using bamboo fibres to produce upholstery. Now, Renault has joined the 100% renewable set with its much- revised Zoe model. Using a special carding technique, without melting or chemical reconstruction, the industry first process uses old seatbelts and recycled PET (polyethylene terephthalate) plastics that are already regarded as being inert and safe, in what is known as ‘short-loop’ manufacturing. It is cost- effective and reduces emissions by around 60%, in contrast with conventional fabric production. Applied to dashboard, centre console, door cards and seating, the result is a very high-quality finish. However, on upmarket versions of the Zoe, which feature a leather-like fabric alongside the cloth, no animals have been sacrificed for the more luxurious appearance. Again, a similar process has resulted in the leatherette fabric, which breathes similarly to hide and is even more wear and stain resistant, as added bonuses. 

KIA – RESOLVING TRANSMISSION POWER LOSSES IN HYBRIDS 

While pre-emptive gearbox shift technology features in the Nissan Skyline GTR35, see New Car Focus on page 60, problems confronting manufacturers of hybrid vehicles are, firstly, the type of transmission being used, which tends to favour constantly variable, secondly, the speed of perceived ratio changes and, as an adjunct, the enjoyment factor for the driver. Kia, while not unique, uses a fairly conventional, twin-clutch, automated-manual gearbox in its hybrid models. Renowned for effecting race-quick and normally smooth gearchanges, you might not feel that further improvements can be made. However, Hyundai, Kia’s parent company, has now developed ASC (Active Shift Control), which applies control logic software (that monitors gearshift speeds 500 times a second) to the Hybrid Control Unit (HCU) electric motor that aligns the rotational speeds of both engine and gearbox, to reduce gearshift times from 500ms to 350ms and make the changes smoother too. Most hybrids do not feature torque converters, as they can be very inefficient. Using the ASC, Kia’s tests resulted in better acceleration, increased fuel economy and lower CO2 emissions, with the added benefit of increasing the longevity of the transmission, by minimising friction during each gearshift. The speedier gearshifts impart extra driver satisfaction. Once the test programme is completed, ASC will be introduced to all hybrid cars in Hyundai-Kia’s ranges. 

FALKEN – USING TYRES TO DEVELOP ENERGY 

School-time physics ensures that most people know that motion energy can be turned into another form of energy. Therefore, it is fascinating to learn that Falken Tyre, which is part of the enormous Sumitomo Rubber Industries conglomerate, has been working in close association with the Kansai University in Japan. While energy is required and used by both engine and transmission to turn road wheels, the tyres heat-up and static electricity builds-up. If the energy were harnessed, it might be  used to generate electricity efficiently, as the wheels turn. The result of the exercise is the Energy Harvester tyre. Within its carcass are two layers of rubber, each of which is covered in an electrode, along with a negatively charged film that interfaces with a positively charged film. When fixed to the inside of a conventional tyre carcass, it generates electricity as the tyre deforms during rotation. Falken’s engineers believe that the Energy Harvester could lead to practical applications, such as a power source for sensors used by TPMS (Tyre Pressure Monitoring Systems), although it has to be noted that TPMS sensors are not especially power sapping, meaning that future development is needed for it to be of any practical use. Created as part of Sumitomo’s R&D programme to develop technologies that target improvements in safety and environmental performance, the Japan Science and Technology Agency (a national R&D body) has recognised it as a ‘seed project’ under A-STEP (a technology transfer programme). Sumitomo Rubber Industries will now advance its research with support from the Agency. 

 

Tags: , , , , , , , , , , , , ,

Share.

About Author

Leave A Reply